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SUMMARY 
 

Three-dimensional controlled-source electromagnetic (CSEM) surveys can be a useful technique for oil and gas hydrate detection in 

marine environments. Electromagnetic waves are emitted from sources, and the ensuing electric and/or magnetic fields are recorded at 

one, or more receivers. The number, frequency, and position of sources and the placement of receivers depends on the particular 

application. The solution of an inverse problem is required to recover the earth’s conductivity, which can be either isotropic or 

anisotropic in nature.  

 

A major issue with either an isotropic or anisotropic CSEM inversion is the computational cost associated with the solution of many 

linear systems of equations. This is a result of a large spatial domain potentially containing complicated bathymetry, as well as the 

existence of thousands of source and frequency combinations. Overall, there could be thousands or even millions of systems of 

equations to solve on expansive meshes. To assist with these numerical issues, we use ideas developed for airborne electromagnetic 

inversions.  First, we incorporate a locally refined mesh for the forward problem, specifically optimized for a source and set of receivers. 

Second, we use stochastic programming techniques to solve the CSEM problem with many sources and receivers. These methods 

dramatically reduce the numerical cost of each forward model as well as the total number of simulations. In this work we describe the 

methods used to overcome these computational difficulties. 
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INTRODUCTION 
 

3D controlled-source electromagnetic (CSEM) inversion can be a useful technique for oil and gas hydrate detection in marine 

environments. Electromagnetic waves are emitted from sources at a particular frequency, and ensuing electric and/or magnetic field 

information is recorded by a collection of receivers. The number, frequency and positions of sources and the placement of receivers 

depends on the characteristics of the respective application. To recover the earth’s conductivity, an inverse problem is solved; producing 

a conductivity model that can reproduce the observed data. When a-priori information suggests that anisotropy is present, the 

conductivity is no longer scalar, and this can cause erroneous models to occur if an isotropic conductivity is assumed. 

 

CSEM imaging techniques are now common, but solving for anisotropic conductivity in 3D is still relatively new (Newman et al., 

2010). Generally, the CSEM inverse problem is set up as a discrete optimization problem where the residual between observed and 

predicted data is minimized with some form of regularization subject to constraints. Forward modelling of electromagnetic fields 

requires the numerical solution of Maxwell’s equations. For a given mesh, this is achieved through finite difference, finite volume or 

finite element approaches (Schwarzbach et al., 2011). 

 

A major issue with either an isotropic or anisotropic CSEM inversion is the computational cost associated with the solution of many 

linear systems of equations. This is a result of a large spatial domain potentially containing complicated bathymetry, as well as the 

existence of thousands of source locations and frequency combinations. Overall, there could be thousands or even millions of systems 

of equations to solve for on expansive meshes. To assist with these numerical issues, we use two ideas developed in Haber and 

Schwarzbach (2014) for airborne electromagnetic inversion. First, we incorporate a locally refined mesh for the forward problem, 

specifically optimized for a source and set of receivers. Second, we use stochastic programming techniques, in particular, proximal 

SAA methods (Ruszczynski and Shapiro, 2003) to solve the CSEM problem with many sources and receivers. These methods 

dramatically reduce the numerical cost of each forward model as well as the total number of simulations that are required to run the 

inversion. 

 

For the anisotropic inversion, we separate the problem into two steps. First, we solve for a horizontal conductivity, then we fix this 

conductivity and solve for scale factors that relate the horizontal and vertical conductivities. 
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METHOD 

 
Electromagnetic problems are governed by Maxwell's Equations.  Maxwell's Equations with an isotropic conductivity are 

 

𝛻 × 𝐸⃗ 𝑗𝑘 + 𝑖𝜔𝐵⃗ 𝑗𝑘 = 0 

𝛻 × 𝜇−1𝐵⃗ 𝑗𝑘 − 𝛴𝐸⃗ 𝑗𝑘 = 𝑞 𝑘 

𝑛⃗ × 𝐵⃗ = 0 

 

Here, 𝐸⃗  is the electric field, 𝐵⃗  is the magnetic flux density,  𝑞  contains the external current density sources, μ  is the magnetic 

permeability, ω is the angular frequency, Σ is the tensor conductivity, j is the frequency index, k is the transmitter index and n is a 

normal vector.  Typically, in field experiments we have a small number of frequencies, 𝑛𝑓 but many more (thousands) of sources, 𝑛𝑠. 

Here we choose boundary conditions on the tangential components of  𝐵⃗  but we can implement other boundary conditions as well 

that are equally appropriate. 
 

Three primary difficulties are encountered when discretizing the system. First, the conductivity Σ varies over several orders of 

magnitude. Second, the curl operator possesses a non-trivial null-space, and the resulting linear systems are highly ill-conditioned. 

This negatively affects the performance of iterative solvers and direct methods are thus a preferable option if the problem size is 

sufficiently small. Third, the fields may change rapidly close to the sources while becoming smooth some distance away from the 

sources. This requires a sufficiently fine mesh around each source, but allows coarsening far from the source. To alleviate these 

problems, we use a locally refined OcTree mesh (see Schwarzbach et al. (2011) for OcTree meshes used with Maxwell’s equation). 

 

For problems with a few sources and receivers, or when the sources and receivers are in the same area, it is possible to use a single 

mesh for all sources, receivers and model features. Discretizing Maxwell's equation on this mesh leads to a single linear system to be 

solved for all sources and receivers. However, for problems where the domain of interest is large, this methodology is not feasible. If 

we were to perform all the computations on a single mesh, that mesh would have to contain hundreds of millions of degrees of 

freedom and the problem would be intractable. One way to bypass this difficulty is by using two steps. In the first, the forward 

modelling mesh is decoupled from the inversion mesh. In the second step, individual meshes are built for each source/receiver 

position. While this leads to tens of thousands of meshes for the solution of the forward model, each mesh is rather small and 

therefore, the forward problem on this mesh can be quickly carried out. Furthermore, since each forward problem can be carried out 

individually, this step is easily parallelized and is optimally scalable (if the number of nodes used for the computation is smaller than 

the number of sources). This concept is demonstrated in the Figure 1. 

 

 
Figure 1 - Examples of locally refined octree meshes. 

 

In our approach, the forward modelling mesh captures the entire domain. It is fine locally and coarse further away. Unlike the 

footprint approach, in our approach, the conductivity that is far away from the source/receiver position is averaged and is not ignored. 

In this way, we can treat large conductors that are far from the source but still influence the data. Using our methodology, we can 

compute the solutions for problems with thousands of sources in a reasonable time frame. 

 

Our methodology uses a relatively small number of cells (roughly ten thousand) for each forward mesh which allows the use of direct 

solvers for the forward problem. Furthermore, our mesh generation process is quick and we can generate tens of thousands of meshes 

in a few minutes. 
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While we can model any anisotropic conductivity, the data rarely supports the inversion of a six-component tensor. To this end we 

model the anisotropic conductivity in each cell as 

𝛴 = (
𝜎 0 0
0 𝜎 0
0 0 𝑠𝜎

) 

 

Where σ is a conductivity and s is a horizontal to vertical scaling parameter. We start by inverting for σ assuming s is known and 

then we adjust s if we are unable to fit the data with a geologically reasonable model. When no a-priori information about anisotropy 

is given, we set s = 1 everywhere and obtain an isotropic conductivity. If the data or a-priori information justifies an anisotropic 

model, then in the second stage, we fix σ and invert for s, thus, obtaining an anisotropic model. 

 

To first solve for σ, assume that data is collected for 𝑛𝑓 frequencies and ns sources and that the sources are discretized on ns meshes. 

Let 𝐴𝑖𝑗(𝑚) be the discrete linear system obtained by the discretization of Maxwell’s equations with the i-th source and the j-th 

frequency with m = log(σ). We assume that the model m is discretised on an inversion mesh that is fine across the entire survey 

domain. To obtain the model for a particular forward problem, a much coarser interpolation is used. The main advantage of an 

OcTree mesh is that the forward meshes are nested within the inverse mesh, making the interpolation straight forward. 

 

Finally, let 𝑃𝑖𝑗
𝑇  be a matrix that projects the solution of the ij-problem to 𝑛𝑟 receivers. Then the simulated data can be written in the 

form of a set of vectors 

 

𝐝𝐢𝐣(𝐦) = 𝑃𝑖𝑗
𝑇𝐴𝑖𝑗(𝐦, 𝐬)−1𝐪𝑗     for    𝑖 = 1, … , 𝑛𝑠 , 𝑗 = 1, … , 𝑛𝑓 

 

Let 𝐝𝑜𝑏𝑠 be the observed data, that is, the data collected in the field. The goal of the first step of the ij-inversion is to estimate a log 

conductivity m, given a fixed s such that 𝐝𝑖𝑗(𝐦) ≈ 𝐝𝑖𝑗
𝑜𝑏𝑠 for i = 1, . . . , ns, j = 1, . . . nf. Then, if required, we fix m and estimate a scale 

factor s to produce a further improved data fit.  

 

Let 𝑊𝑖𝑗  be the inverse covariance matrix for each data vector 𝑑𝑖𝑗 . Then, the misfit between the observed and predicted data can be 

written as  

 

ℑ𝑚𝑖𝑠(𝐦, 𝐬) =  
1

𝑛𝑠𝑛𝑓
∑‖𝑃𝑖𝑗

𝑇𝐴𝑖𝑗(𝐦, 𝐬)−1𝒒𝑗 − 𝒅𝑖𝒋‖𝑊𝑖𝑗

2

𝑖𝑗

 

 

where ‖⋅‖𝑊is the W-weighted norm.  Since the problem does not admit stable solutions, we use regularization in the form of smoothness 

and smallness. We define the discrete cell-centred gradient matrix 𝐺𝑐 and use the regularization 

 

ℑ𝑟𝑒𝑔(𝐦, 𝐬) =
1

2
‖𝐺𝑐(𝐦 − 𝐦𝑟𝑒𝑓)‖𝑉

2
+

1

2
𝛼𝑠‖𝐦 − 𝐦𝑟𝑒𝑓‖𝑉

2
+

1

2
‖𝐺𝑐(𝐬 − 𝐬𝑟𝑒𝑓)‖𝑉

2
 

 

where the matrix V contains weights that allow for different smoothing in different directions, 𝐦𝑟𝑒𝑓 and 𝐬𝑟𝑒𝑓 are model and scaling 

reference terms chosen to represent a-priori information. 𝛼𝑠 is a smallness parameter. In typical inversions we set αs to be very small 

compared to the weights in V. 

 

The model is obtained by minimizing a linear combination of the misfit and the regularization 

 
min

𝐦𝐿 ≤ 𝐦 ≤ 𝐦𝐻
 ℑ(𝐦, 𝐬) =  ℑ𝑚𝑖𝑠(𝐦, 𝐬) + 𝛼ℑ𝑟𝑒𝑔(𝐦, 𝐬) 

 

where α is a regularization parameter and 𝐦𝐿 and 𝐦𝐻 are vectors of upper and lower bounds that are set based on geological a-priori 

information. We then use stochastic programming techniques, in particular the Stochastic Average Approximation (SAA), to 

approximate the sum over all the terms by a random subset.  Then we use the Gauss-Newton method to solve each sub-problem as 

shown in Ruszczynski and Shapiro (2003). 

 

SYNTHETIC EXAMPLE 

  
In this section, we describe numerical experiments that demonstrate the capability of our code to deal with anisotropy in large scale 

problems.  The survey consists of five 13km North-South lines spaced 1km apart as shown in Figure 2. Each line contains 15 

transmitter locations where the transmitter is an 800m line source located at a depth of 10m below the air/water interface. For each 

transmitter, there are 15 receivers measuring in-line electric fields, evenly spaced 500m apart behind the transmitter. 13 linearly 

spaced frequencies are collected that range from 0.22 to 2.62 Hz. The true model consists of four layers with two resistive blocks 

buried at depth. The first two layers are isotropic with layer 1 being 300m of 0.3 Ωm sea-water and layer 2 containing 300m of 1.0 

Ωm sediments. Layer 3 is 100m thick with a horizontal resistivity of 2.0 Ωm and a vertical conductivity of 4.0 Ωm while layer 4 

extends to depth with a horizontal resistivity of 2.0 Ωm and a vertical resistivity of 1.5 Ωm. The isotropic resistive blocks are 50 Ωm 

and 100 Ωm, and buried from 1200m – 1300m and 1400m – 1600m respectively as shown in Figure 3. Figure 4 shows the scale 

factor between the true horizontal and vertical resistivity values.  
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For this simulated survey, we have 13,500 combinations of sources and frequencies. We use local OcTree meshes with a parallel 

system of 32 cores, each with a speed of 2.7GHz with every four cores sharing 32GB of RAM, allowing the simulation to be 

completed in less than 40 minutes. We first solve for σ on a mesh composed of 825,038 OcTree cells. The desired misfit of 2.5% 

from its initial value was obtained in 19 iterations with the whole inversion process taking about 17 hours to complete. 

 

Figure 5 shows our isotropic inversion result using Figure 3 as a reference model. The two resistive blocks are identified but the depth 

of the deeper target is underestimated and the true resistivity values are too low. We also ran an anisotropic inversion where we fixed 

the horizontal resistivity and inverted for a scale factor model which produces the vertical resistivity. Figure 6 shows this scale factor 

model and Figure 7 shows the resulting vertical resistivity model.  Figure 8 compares the isotropic and anisotropic results in plan view 

at 1300m depth. With the anisotropic code, there is a small improvement in the depth and true resistivity of the recovered target resistors 

compared to the isotropic result. 

 

CONCLUSIONS 
 

CSEM imaging techniques are now common but solving for anisotropic conductivity in 3D is still relatively new (Newman et al., 

2010). In this work, we have implemented a two-stage anisotropic 3D CSEM inversion and applied the method to a realistic synthetic 

model.  

 

In the first stage, we recover an isotropic conductivity model that does a reasonable job in depicting the true shape and conductivity of 

the target resistors. In the second stage, we fix the conductivity and solve for a scale factor that relates the vertical and horizontal 

conductivity in each mesh cell. The resulting vertical conductivity model is an improvement over the isotropic result in terms of both 

defining the true spatial extents and conductivity of the targets. 

 

REFERENCES 
 

Haber, E. and Schwarzbach, C., 2014, Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple OcTree 

meshes: Inverse Problems, 30(5), 1–28. 

 

Newman, G.A., Commer, M. and Carazzone, J.J., 2010, Imaging CSEM data in the presence of electrical anisotropy: Geophysics, 

75(2), P51–P61. 

 

Ruszczynski, A. and Shapiro, A., 2003, Stochastic programming. Amsterdam: Elsevier. 

 

Schwarzbach, C., Haber, E. and Columbia, B., 2011, Finite element based inversion for electromagnetic problems using stochastic 

optimization: 81st Annual International Meeting, SEG, Expanded Abstracts, 30, 567–572. 

Figure 3 - Survey layout with 

transmitter lines in black, receiver 

locations in white. 

Figure 3 - North-South cross-section through the isotropic conductivity (𝝈) 

reference model. Receivers for one towed transmitter shown as white dots. 

Location of true resistive blocks shown in red. 

Figure 2 - North-South cross-section through the conductivity scale factor 

(s) reference model. Location of true resistive blocks shown in red. 
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Figure 5 - North-South cross-section through the recovered isotropic conductivity model (σ). 

Location of true resistive blocks shown in red 

 

 
Figure 6 - North-South cross-section through the recovered conductivity scale factor (s) model. 

Location of true resistive blocks shown in red. 

 
Figure 7 – North-South cross-section through the recovered vertical conductivity model (sσ). 

Location of true resistive blocks shown in red.  Note the slight improved depth of the recovery resistors 

 

 

 

 

Figure 8 - Plan slice at 1300m 

depth through the recovered 

isotropic conductivity model 

(σ, left pane) and the recovered 

vertical conductivity model (sσ, 

right pane). Location of true 

resistive blocks shown in red 

 


